Change language Go to Italian Version

BIBLIOGRAPHY



>List all the bibliography
Radon and CO2 tracer for radioxenon subsurface sampling in the On Site Inspection
Authors Telloli C., Vaccaro C., Ferrucci B., Rizzo A., Salvi S., Ubaldini A.  Year 2020
Pubblication type Poster International Conference with referee
Abstract The detection of anomalous concentration of Xenon radiosotopes in the subsurface gases during an On Site Inspection (OSI) is a strong indicator of a suspicious underground nuclear explosion. This implies that the sampling methodology ensure the collection of a reliable representative subsurface gaseous sample, avoiding the mixing with atmospheric gases. Radioxenon sampling in shallow layers can provide reliable results for desert areas, but different local geological features could result in more complex migration of subsurface gases to the very near superficial layers affecting the representativeness of the sample.
Radon is currently use as tracer to reveal the effective sampling of gases form the deep surface, so its measurement is coupled with the collection of radioxenon subsurface gases. The detection of radon anomalous concentration in subsurface gases could indicate different causes: high Radon content in subsurface indicate high radon concentration underground caused by the accumulation in an underground and confined cavity; on the other side, low radon detection in subsurface indicate low radon concentration underground that can be indicative of the absence of an underground cavity or the presence of rocks in the cavity absorbing radon. This lead to the consideration that radon is not a univocal tracer for Xe surface sampling in the OSI. A portable isotopic analyzer (that measures d13C and CO2) could be used to localize the faults and fracturing that could lead to a seeping of the subsurface gases. Therefore, this technique could be proposed as an auxiliary equipment for a preliminary activity during an OSI and a monitoring tool during subsurface gas sampling.
Reference EGU GeneralAssembly 2020, Session International Monitoring System and On-site Verification for the CTBT, disaster risk reduction and Earth sciences
DOI: http://doi.org/10.5194/egusphere-egu2020-21039
WEB Reference http://doi.org/10.5194/egusphere-egu2020-21039
Repository reference CW138-001
Research unit RADEC
LastUpdate 04/03/2021
Related research topics
Code Topic Description
4 TECNICHE ISOTOPICHE
4.1 Analisi isotopiche emanazioni aeriformi

impact factor Falso





back to Home page

   


 

POR FESR

logo rete alta tecnologia emilia romagna

Fondo per lo sviluppo e la coesione
Il Laboratorio ha realizzato progetti finanziati dai Fondi europei della Regione Emilia-Romagna e dal Fondo per lo sviluppo e la coesione
Attrattività Ricerca Territorio - Emilia-Romagna
Sitemap
Termini di uso
Politica sulla Privacy
Accessibilita'

Share this page with

LinkedIN share Facebook share share
Dichiarazione di accessibilità 6d66ae69-c6fd-4cb9-b536-be3fdfb0144c